Laplace’s law, which can be used to estimate myocardial wall stress (σ) from intraventricular pressure (LVP), radius of curvature (R), and wall thickness (h), has long been recognized as a fundamental physical principle in understanding cardiac function in health and disease: $\sigma = \text{LVP} \cdot \frac{R}{h}$. On the basis of this law, the enlarged chamber radius of the chronically failing heart exposes myocytes to increased systolic wall stress. This leads to cellular and chamber hypertrophy, which, in an adaptive process, acts to renormalize wall stress. As the chamber continues to dilate over time, the limits of hypertrophy appear to be reached so that wall stress ultimately increases. This increased afterload further impairs the ability of the already weakened myocytes to shorten, and cardiac performance deteriorates. Globally referred to as ventricular remodeling, this process is partially preventable and reversible as demonstrated in studies of angiotensin-converting enzyme inhibitors, β-blockers, and during hemodynamic unloading by prolonged support with a left ventricular assist device.

Several surgical therapies, such as the Myocor ventricular shape change device (Myocor, Inc, Plymouth, Minn), described in this issue by McCarthy and colleagues, are being developed for treating heart failure by physically remodeling the dilated heart. Stress reduction via Laplace’s law is usually cited as the rationale for these therapies. The Batista procedure (partial left ventriculectomy for patients with idiopathic cardiomyopathy) is an important predicate example. Despite initial enthusiasm, clinical studies showed that although estimated wall stress was reduced, a majority of patients did not experience improved hemodynamics or clinical status in the long term. In my opinion, one limitation in thinking about this procedure was the focus on its potentially beneficial effects on wall stress to the exclusion of considering its effects on overall pump function. Specifically, the effects of myocardial resection on diastolic ventricular properties were under-appreciated. When expressed in terms of end-systolic and end-diastolic pressure-volume relationships (ESPVR and EDPVR, respectively), theory predicted and clinical research later showed that despite the potentially beneficial effects on systolic properties of shifting the ESPVR leftward (increased chamber contractility), the Batista procedure was also associated with counteracting effects on diastole. These were manifest as similar, or even greater, leftward shifts of the EDPVR with a net result of little net benefit on overall left ventricular pumping capacity (Figure 1, A). Hypothetically, it would be more desirable for a therapy to cause a larger leftward shift in the ESPVR than in the EDPVR (Figure 1, B), which would result in a greater ventricular pumping capacity. Furthermore, we argued that changes in ejection fraction resulting from reductions in end-diastolic volume without changes in stroke volume are not indicative of improved systolic function as they are in the setting of standard inotropic therapy.

McCarthy and colleagues, who played a pivotal role in the systematic clinical evaluation of the Batista operation, have not abandoned the concept that radius of curvature reduction can have a favorable impact on ventricular function. The investigators used struts (Myosplint; Myocor, Inc) placed across the ventricle to pull opposing sides of the chamber together to alter ventricular shape and functionally separate the chamber into two lobes, each with a smaller radius than the original heart. An easy to understand explanation of how Laplace’s law predicts systolic wall stress reduction by this shape change therapy is provided by the authors. This

See related article on page 482.
chronic hemodynamic benefit, pivotal questions include whether the Myosplint device actually resulted in regression of hypertrophy (wall thickness and heart mass data would be of interest) and whether any such changes would translate into clinically meaningful effects on patient symptoms, disease progression, and/or mortality. The latter are difficult issues to address in preclinical studies.

As noted above, several forms of surgical therapies are being investigated to physically remodel the failing heart, including other passive devices and resection of akinetic scars. There is a need to better define the effects of such procedures on a broad range of mechanical and biochemical properties of the heart; consideration of effects on wall stress alone may not reveal the entire picture. The importance of improved understanding stems at least in part from the need for physicians considering referring their patients for clinical trials to be able to assess the potential that a surgical heart failure therapy with little (if any) acute hemodynamic benefits will ultimately translate into clinical benefits. Could this be the case for a therapy that changes the shape of the failing heart? If such benefits were confirmed by careful clinical investigation, surgeons could have a means of meaningfully affecting the heart failure epidemic and change the shape of heart failure treatment in the future.

Figure 1. Ventricular pump properties are typically represented by ESPVR and EDPVR. In heart failure (red) both systolic and diastolic curves are shifted toward significantly larger volumes compared with normal (gray), a manifestation of ventricular remodeling. It was shown previously that with the Batista procedure (blue), and possibly for the Myosplint device, there is a rightward shift of the ESPVR that is slightly greater than the shift in the ESPVR (A), resulting in little change in net ventricular pump function as shown by the pressure-volume loops with similar stroke volumes at comparable end-diastolic and aortic pressures. This would contrast with a hypothetical therapy that would induce a greater leftward shift of the ESPVR than EDPVR and cause an increase in net pumping capacity (B), as shown by the pressure-volume loop (blue), with significantly increased stroke volume compared with the heart failure state (red) at comparable end-diastolic and aortic pressures.

References

JTCVS On-Line Manuscript Submission and Review

Please visit http://www.editorialmanager.com/jtcvs/

Effective September 15, 2001, authors and reviewers may submit manuscripts and reviews electronically via Editorial Manager, our new Web-based system with full electronic submission, review, and status update capabilities.

As we move from paper to electronic submissions, the Editorial Office will make proxy submissions of all manuscripts accompanied by a diskette containing the electronic files of the text, tables, and figures. Editors, authors, and reviewers will receive automatic e-mails when significant events occur.

We strongly encourage all authors and reviewers to use Editorial Manager. Although we will continue to accommodate the submission of paper manuscripts for some months, our goal is to be completely electronic within 9 to 12 months.

All individuals currently in our database for whom we have e-mail addresses will receive via e-mail a system-assigned username and password that can be used to log in to the system without prior registration. All those not receiving the e-mail must register the first time they use the system.

As with any broad systemic change, the conversion to the new system will take some time to complete. We ask your patience as we replace our in-office database with the new system. We also encourage you to take advantage of the speed and efficiency that the new system will provide for us all: editor, author, reviewer, and publisher.