ABSTRACT: Right ventricular (RV) failure remains a major cause of global morbidity and mortality for patients with advanced heart failure, pulmonary hypertension, or acute myocardial infarction and after major cardiac surgery. Over the past 2 decades, percutaneously delivered acute mechanical circulatory support pumps specifically designed to support RV failure have been introduced into clinical practice. RV acute mechanical circulatory support now represents an important step in the management of RV failure and provides an opportunity to rapidly stabilize patients with cardiogenic shock involving the RV. As experience with RV devices grows, their role as mechanical therapies for RV failure will depend less on the technical ability to place the device and more on improved algorithms for identifying RV failure, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices.

Right ventricular (RV) failure increases short-term mortality.1–11 This observation has been confirmed in the setting of acute myocardial infarction, cardiogenic shock, advanced left-sided heart failure, and pulmonary hypertension. Four primary mechanisms underlie the development of acute RV failure: contractile failure secondary to myocardial ischemia or inflammation caused by myocarditis, volume overload as a result of right-sided valvular insufficiency, volume overload caused by increased venous return or displacement of the interventricular septum toward the left ventricle (LV) after placement of an LV assist device (LVAD),12–15 and pressure overload resulting from decompensated left-sided heart failure, worsening pulmonary hypertension, or acute pulmonary embolus. Despite growing awareness of the importance of acute RV failure, mechanical circulatory support (MCS) devices remain the only therapy that specifically targets RV failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices.

PATHOPHYSIOLOGY OF ACUTE RV FAILURE

The majority of RV stroke work maintains forward momentum of blood flow into a highly compliant, low-resistance pulmonic circulation. For this reason, the RV is characterized by low peak systolic pressure and the absence of isovolumic phases of contraction and relaxation during systole and diastole, and it generates one
The RA pressure to pulmonary capillary wedge pressure (PAPi) is a measure of RV contractile function. A ratio of PAPi <1.0 indicates RV failure in acute MI, while a ratio of PAPi >1.85 indicates RV failure after LVAD implantation.

Table 1. Hemodynamic Formulas to Assess Right Ventricular Function

<table>
<thead>
<tr>
<th>Hemodynamic Formulas to Assess RV Function</th>
<th>Formula</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac filling pressures</td>
<td>RAP/PCWP</td>
<td>>0.63 (RVF after LVAD)</td>
</tr>
<tr>
<td>PA pulsatility index (PAPI)</td>
<td>(PASP−PADP)/R</td>
<td>>0.86 (RVF in acute MI)</td>
</tr>
<tr>
<td>Pulmonary vascular resistance</td>
<td>mPAP−PCWP/CO</td>
<td>>3.6 (RVF after LVAD)</td>
</tr>
<tr>
<td>Transpulmonary gradient</td>
<td>mPAP−PCWP</td>
<td>Undetermined</td>
</tr>
<tr>
<td>Diastolic pulmonary gradient</td>
<td>PADP−PCWP</td>
<td>Undetermined</td>
</tr>
<tr>
<td>RV stroke work</td>
<td>(mPAP−RAP)x SV/0.0136</td>
<td><15 (RVF after LVAD)</td>
</tr>
<tr>
<td>RV stroke work index</td>
<td>(mPAP−RAP)/SV index</td>
<td><0.3–0.6 (RVF after LVAD)</td>
</tr>
<tr>
<td>PA compliance</td>
<td>SV×(PASP−PADP)</td>
<td><2.5 (RV in chronic heart failure)</td>
</tr>
<tr>
<td>PA elastance</td>
<td>PASV/CO</td>
<td>Undetermined</td>
</tr>
</tbody>
</table>

CO indicates cardiac output; LVAD, left ventricular assist device; MI, myocardial infarction; mPAP, mean pulmonary artery pressure; PA, pulmonary artery; PAPI, pulmonary artery diastolic pressure; PASP, pulmonary artery systolic pressure; PCWP, pulmonary capillary wedge pressure; RA, right atrial pressure; RV, right ventricular; RVF, right ventricular failure; and SV, stroke volume.

RV FAILURE: A HEMODYNAMIC PROBLEM

Acute RV failure is a hydraulic problem caused by impaired function of the pump, the valves, or the conduits. Diagnosing acute RV failure remains a major clinical challenge. Physical examination, echocardiographic, and laboratory findings associated with RV failure have been reviewed previously. Invasive hemodynamic measures can be obtained with a PA catheter and are predictive of RV failure (Table 1). The simplest approach to quantify RV dysfunction is to measure the ratio of right atrial (RA) to pulmonary capillary wedge pressures. In the setting of acute myocardial infarction, Lopez-Sendon and colleagues identified that a ratio of RA pressure to pulmonary capillary wedge pressure >0.86 was associated with pathological evidence of RV infarction at necropsy. Several subsequent studies have demonstrated the utility of the ratio of RA pressure to pulmonary capillary wedge pressure as an index of biventricular congestion and the relative contribution of LV or RV failure among patients with acute myocardial infarction and advanced heart failure and as a predictor of RV failure after LVAD implantation. RV stroke work is another important measure of RV function; however, calculation of RV stroke work requires a true estimate of cardiac output, which is commonly measured with the Fick method in RV failure. The method of thermodilution may underestimate cardiac output as a result of tricuspid regurgitation.

Multiple formulas to assess pulmonary hemodynamics have been developed to quantify RV afterload, including pulmonary vascular resistance, transpulmonary gradient, diastolic pulmonary gradient, PA compliance, and PA impedance. However, none of these formulas in isolation definitively identifies RV failure. In 2012, we first reported the clinical utility of the PA pulsatility index (PAPI) as a measure of RV failure in the setting of acute MI. The PAPI is the ratio of PA pulse pressure divided by RA pressure. PA pulse pressure provides an estimate of RV pulsatile load and contractile strength. By normalizing PA pulse pressure to RA pressure, the PAPI incorporates RV congestion as another indicator of RV failure. In this first study, we identified that a PAPI <1.0 was a highly sensitive indicator of RV failure in the setting of an acute myocardial infarction. Next, we explored the utility of the PAPI as a marker of RV failure after implantation of a continuous-flow LVAD. In this study, we identified that a PAPI <1.85 was a sensitive predictor of RV failure after LVAD implantation. Several studies have since confirmed the utility of the PAPI as a marker of RV dysfunction.
RV failure in various settings. The PAPi has not been studied in the setting of PA hypertension but may be of limited value in this setting because of compensatory RV remodeling that allows relatively high PA pulse pressures despite worsening RV function. Further studies exploring the clinical utility of the PAPi as a marker of RV failure are required.

MEDICAL MANAGEMENT OF RV FAILURE

Medical management of acute RV failure has been extensively reviewed previously and begins with treatment of any reversible cause, which commonly includes coronary revascularization for an acute coronary syndrome or thrombolytic therapy for a pulmonary embolism. Medical therapy can be divided into 3 major interventions. First, optimization of RV preload with either diuretic therapy or volume expansion is required to maintain cardiac output without worsening venous congestion. For this reason, invasive hemodynamic monitoring with a PA catheter may be useful for patients with RV failure and cardiogenic shock. Second, reducing RV afterload with pulmonary vasodilators may improve RV cardiac output. Third, for patients with persistent hemodynamic instability despite optimization of RV loading conditions, inotropic therapy with either a phosphodiesterase inhibitor or β1-adrenergic receptor agonist may further improve total cardiac output. For acute RV failure that is refractory to medical therapy, invasive therapeutic options include atrial septostomy, atrial pacing in the setting of bradycardia, durable MCS, and AMCS devices.

MCS FOR RV FAILURE

Historically, surgically implanted pumps to support RV failure were pulsatile with valves located within the inflow and outflow cannulas. One of the earliest acute RV support devices was a PA balloon counterpulsation pump, which was limited by the need for surgical implantation and variable effects on RV afterload. In the early 1990s, rotary-flow RV assist devices (RVADs) demonstrated hemodynamic superiority and better clinical outcomes compared with PA balloon counterpulsation pump for acute RV failure. Second- and third-generation surgical pumps used as RVADs now include roto-dynamic pumps that transfer rotational kinetic energy to the circulation.

Preload and afterload are major determinants of flow through all rotary-flow MCS devices. Device flow (Q) is directly related to rotations per minute of the impeller and indirectly related to pressure gradient between the inlet (preload) and outlet (afterload) of the impeller. This pressure gradient (ie, afterload–preload), referred to as the pressure head (H), varies during the cardiac cycle (Figure 1). For LVADs that draw blood from the LV and pump it to the aorta, H is lowest during ventricular systole when LV pressure is greatest; conversely, H is highest during ventricular diastole when LV pressure is at its lowest value. Accordingly, because flow is inversely related to H, LVAD pump flow is maximum during systole and minimum during diastole. These dynamics are readily appreciated from the rotations per minute–dependent H-Q curve of a pump. For RV support devices that draw blood from the RA and pump to the PA, the dynamics are fundamentally the same, but because variations in RA and PA pressures are not as great as in the LV, variations in RVAD flow are generally significantly less than for LVADs.

In the case of RV failure, most MCS systems will include cannulation of the RA and PA to deliver flow into and out of a continuous-flow pump, respectively. H in this case is determined by pulmonary artery (PA) pressure (Pout) and right atrial (RA) pressure (Pin). In the setting of pulmonary hypertension, H may be high, which reduces device flow. In the setting of acute severe RV failure, H may be low, which increases device flow.
DURABLE MCS OPTIONS FOR RV FAILURE

In the contemporary era, surgical RVADs continue to use extracorporeal centrifugal-flow pumps such as the CentriMag pump (St. Jude, Minneapolis, MN) and RA-to-PA cannulation with either a thoracotomy or an open sternotomy. Given that large-bore, short cannulas may be used for surgical cannulation, flows achieved with this approach can range up to 6 to 8 L/min. For more durable, long-term support, isolated pulsatile RVADs, surgically deployed rotary-flow RVADs, and biventricular support with pulsatile VADs or total artificial heart replacement are potential options; however, the majority of these patients are required to remain in the hospital under close surveillance. For this reason, surgeons have begun to use commercially available LVADs, including the Jarvik and HeartWare devices, in the RV position to support isolated RV or biventricular failure.51–56 A major limitation of this approach is that the operating H-Q curve for a surgical LVAD is better suited for the systemic circulation with higher pressure and resistance. Furthermore, because the RV tends to operate in a lower-pressure, less resistant, and more compliant system, surgical LVADs connected to the RA and PA may be more prone to suction events. To overcome this limitation, operators have placed gap spacers to reduce protrusion of the LVAD inlet cannula into the RV and restricted the outflow graft of an LVAD by up to 50%, thereby increasing resistance to VAD outflow to a level that approximates the systemic circulation.51–56

Several surgically implanted devices for more durable RV support are emerging. The HeartWare MVAD is an axial-flow pump that has a unique outflow port that originates at a 90° angle from the impeller, thereby functioning in part like a centrifugal-flow pump. The miniature size of the MVAD makes it potentially suitable for RV and biventricular support, which has been tested in preclinical models.57 The MVAD is not approved for clinical use in the United States. The Circulite Synergy device is another miniaturized hybrid axial-centrifugal–flow pump that has been evaluated in preclinical models for RV and biventricular support.58–61

AMCS (PERCUTANEOUS) OPTIONS FOR RV FAILURE

Percutaneously delivered AMCS devices for RV failure (RV-AMCS) are relatively new and provide the opportunity for early intervention in RV failure without the need for surgery. RV-AMCS device options include venoarterial extracorporeal membrane oxygenation (VA-ECMO), the TandemHeart centrifugal-flow pump (TandemLife, Pittsburgh, PA), and the axial-flow Impella RP catheter (Abiomed Inc, Danvers, MA). These devices can be categorized according to their mechanism of action as either direct RV bypass or indirect RV bypass systems (Figure 2). The Impella RP and the TandemHeart RVAD (TH-RVAD) displace blood from the RA to PA, thereby directly bypassing the RV. In contrast, VA-ECMO displaces and oxygenates blood from the RA to the femoral artery, thereby indirectly bypassing the RV. As a result, these systems have distinct hemodynamic effects, depending on whether the patient has isolated RV failure or biventricular failure (Table 2).

For patients with isolated RV failure, activation of either an Impella RP or a TH-RVAD will directly reduce RA pressure, increase mean PA pressure, and increase LV preload. In the presence of preserved LV function, native cardiac output will increase and LV filling pressures will increase or remain unchanged. LV afterload will remain unchanged. In contrast, VA-ECMO will decrease RA and PA pressure initially and decrease LV preload. LV afterload will increase greatly, and therefore, in the presence of preserved LV function, native cardiac output may remain unchanged or decrease.

For patients with biventricular failure, activation of either an Impella RP or a TH-RVAD will directly reduce RA pressure, increase mean PA pressure, and increase LV preload. In the absence of preserved LV function and without an additional LV support device, native cardiac output will remain unchanged or increase slightly. However, cardiac filling pressures could increase significantly, leading to pulmonary edema. LV afterload would increase. In contrast, VA-ECMO will decrease RA pressure and initially decrease PA pressure and LV preload. However, with poor LV function, increased LV afterload will reduce native cardiac out-

Figure 2. Classifications of acute mechanical circulatory support devices for right ventricular (RV) failure.

Devices options include direct and indirect RV bypass, as well as intracorporeal (Impella RP) and extracorporeal (Tandem RV assist device [RVAD], Protek Duo, venoarterial extracorporeal membrane oxygenation [VA-ECMO]) options.
put and increase LV filling pressures, thereby leading to pulmonary edema and a subsequent increase in mean PA pressure.

If biventricular mechanical support is initiated for biventricular failure, right-sided support will reduce RA pressure and increase PA pressure, thereby providing preload to the LV. With a concomitant left-sided support device in place, native cardiac output will decrease, and as a result, LV filling pressures will decrease or remain unchanged. Similarly, LV afterload will increase or remain unchanged. Because of these effects, identifying biventricular failure is important when considering RV-AMCS.

Intra-Aortic Balloon Pump

Intra-aortic counterpulsation balloon pumps (IABPs) are commonly used to support RV failure but are not optimally suited for this purpose. IABPs inflate during diastole, which causes increased retrograde flow into the aortic root and increases mean arterial pressure, thus potentially increasing coronary perfusion. During systole, the IABP deflates and produces a pressure sink, which then becomes filled by ejected blood from the LV. As a result, IABP therapy reduces LV afterload and increases mean arterial pressure. IABP therapy does not directly support RV function and theoretically may do so only by reducing LV filling pressures, thereby reducing RV afterload, which in isolation may not significantly improve cardiac function for medically refractory acute RV failure. Clinical data evaluating the use of IABPs in RV failure are limited. Several recent studies have reported limited efficacy of IABP therapy in patients with RV failure. If biventricular support is initiated for biventricular failure, right-sided support will reduce RA pressure and increase PA pressure, thereby providing preload to the LV. With a concomitant left-sided support device in place, native cardiac output will decrease, and as a result, LV filling pressures will decrease or remain unchanged. Similarly, LV afterload will increase or remain unchanged. Because of these effects, identifying biventricular failure is important when considering RV-AMCS.

Table 2. Hemodynamic Effects of Acute Right Ventricular Mechanical Circulatory Support Systems for Isolated Right Ventricular Failure or Biventricular Failure

<table>
<thead>
<tr>
<th>RV-AMCS Device</th>
<th>Device Characteristics</th>
<th>Hemodynamic Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inflow</td>
<td>Outflow</td>
</tr>
<tr>
<td>Isolated RV failure</td>
<td>Impella RP RA PA</td>
<td>2–4</td>
</tr>
<tr>
<td>TH-RVAD or Protek</td>
<td>RA PA</td>
<td>2–4</td>
</tr>
<tr>
<td>VA-ECMO</td>
<td>RA FA</td>
<td>2–6</td>
</tr>
<tr>
<td>Biventricular failure</td>
<td>Impella RP RA PA</td>
<td>2–4</td>
</tr>
<tr>
<td>TH-RVAD or Protek</td>
<td>RA PA</td>
<td>2–4</td>
</tr>
<tr>
<td>VA-ECMO</td>
<td>RA FA</td>
<td>2–6</td>
</tr>
<tr>
<td>Biventricular support devices (ie, Impella CP+RP)</td>
<td>RA PA</td>
<td>2–4</td>
</tr>
<tr>
<td>LV AO</td>
<td>2–4</td>
<td>↓ Δ↓</td>
</tr>
</tbody>
</table>

AMCS indicates acute mechanical circulatory support; AO, aorta; CO, cardiac output; FA, femoral artery; LV, left ventricle; LVEDP, left ventricular end-diastolic pressure; MAP, mean arterial pressure; PA, pulmonary artery; PAP, pulmonary artery pressure; PCWP, pulmonary capillary wedge pressure; RA, right atrial; RAP, right atrial pressure; RV, right ventricular; TH-RVAD, TandemHeart right ventricular assist device; VA-ECMO, venoarterial extracorporeal membrane oxygenation; △, no change; ↑ or ↓, mild to moderate change; ↑↑ or ↓↓, moderate to significant change; △↑, no change or mild increase; and △↓, no change or mild decrease.

The most recent introduction to the field of RV-AMCS devices is the Impella RP (Abiomed Inc) microaxial-flow catheter. The Impella RP uses a 22F impeller mounted onto an 11F catheter and delivers blood from the RA into the PA (Figures 3 and 4A). The device is delivered via a 23F venous peel-away sheath into the PA with a 0.018-in wire used as a monorail system and requires 1 venous access site (most commonly the right femoral vein). Once in position, the 23F sheath is replaced with a staged 11F to 23F reposi-tioning sheath. After removal, the venous access site is closed with manual compression and a purse-string or deep mattress suture. The Impella RP cannot be used to oxygenate blood.

Since 2013, several reports have described successful use of the Impella RP, initially outside the United States, for RV failure in the setting of cardiac surgery and after LVAD placement (Table 3). In 2015, the RECOVER RIGHT trial prospectively studied the utility of the Impella RP device for medically refractory RV failure in 12 patients with acute myocardial infarction and 18 patients after cardiac surgery. Immediately after Impella RP activation, central venous pressure and cardiac index improved, allowing weaning of inotrope and vasopressor support. The most common adverse events were bleeding and hemolysis. No thromboembolic events were observed, and worsened tricuspid or pulmonary valve dysfunction was infrequent.
end point of survival to 30 days or hospital discharge of 73% compares favorably to a prior prospective study of a surgical RVAD in a similar patient population.66 The Impella RP has been used to support patients with RV failure associated with malignant ventricular arrhythmias and severe mitral regurgitation.67–69

The TH-RVAD and Protek Duo Cannula: Direct RV Bypass Systems

The TH-RVAD uses an extracorporeal centrifugal-flow pump and 2 venous cannulas to deliver blood from the RA to the main PA. One 21F inflow cannula is placed in the RA, and a second 21F outflow cannula is inserted into the main PA. Most TH-RVAD cannulas are deployed via both femoral veins. For bilateral femoral cannulation, the outflow cannula is placed in the main PA via the right femoral vein, and the inflow cannula is placed in the RA via the left femoral vein. In patients with long torsos (distance from the femoral vein to the fifth intercostal space exceeds 58 cm), the outflow cannula can be placed in the main PA via the right internal jugular vein. This approach can also be used if limitations to femoral venous access exist, including infection, thrombosis, or inferior vena caval filters.70 When right internal jugular access is used, the outflow cannula is situated into the main PA via the right internal jugular, RV, right ventricular; TH-RVAD, TandemHeart right ventricular assist device; and VA-ECMO, venoarterial extracorporeal membrane oxygenation.

Table 3. Clinical Studies Evaluating the Utility of
Acute Mechanical Circulatory Support Systems for Right Ventricular Failure

<table>
<thead>
<tr>
<th>Device</th>
<th>Patient Population</th>
<th>Outcomes</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impella RP</td>
<td>18 Patients (15 Impella RD, 3 Impella RP)</td>
<td>30-d Survival, 72% 1-y Survival, 50% Hemodynamic effects: increased CI, decreased RA pressure</td>
<td>Cheung et al82</td>
</tr>
<tr>
<td></td>
<td>AMI, 39% (n=7) PCCS, 22% (n=4) Post-OHT, 17% (n=3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-LVAD, 11% (n=2) Myocarditis, 11% (n=2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 Patients Post-LVAD (n=18) PCCS/AMI (n=12)</td>
<td>30-d Survival, 73.3% Hemodynamic effects: increased CI, decreased RA pressure</td>
<td>Anderson et al65</td>
</tr>
<tr>
<td></td>
<td>46 Patients Postvalve surgery, 32% (n=15) AMI, 25% (n=12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-OHT, 11% (n=5) Post-LVAD, 11% (n=5) Post-CABG, 7% (n=3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chronic HF, 7% (n=3) Myocarditis, 7% (n=3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Patients Sepsis, 11.1% (n=1) PCCS, 22.2% (n=2) IWMI, 66.7% (n=6)</td>
<td>In-hospital mortality, 44% Hemodynamic effects: increased MAP, CI, RV stroke work; decreased RA pressure</td>
<td>Kapur et al84</td>
</tr>
<tr>
<td></td>
<td>179 Patients PCCS, 39% (n=70) AMI, 26% (n=46) Primary graft failure, 10% (n=17) ADHF, 13% (n=24)</td>
<td>In-hospital mortality, 38.6% (n=69) Hemodynamic effects: decreased RA pressure and mean PA pressure</td>
<td>Truby et al85</td>
</tr>
<tr>
<td></td>
<td>30 Patients Post-LVAD (n=18) PCCS/AMI (n=12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 Patients Post-LVAD (n=18) PCCS/AMI (n=12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADHF indicates acute decompensated heart failure; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CI, cardiac index; HF, heart failure; IWMI, inferior wall myocardial infarction; LVAD, left ventricular assist device; MAP, mean arterial pressure; OHT, orthotopic heart transplantation; PA, pulmonary artery; PCCS, postcardiotomy cardiogenic shock; RA, right atrial; RV, right ventricular; TH-RVAD, TandemHeart right ventricular assist device; and VA-ECMO, venoarterial extracorporeal membrane oxygenation.
and encompasses a series of inflow vents positioned across the superior vena cava into the RA. The second lumen has a multifenestrated distal tip to deliver blood into the main PA. The inflow cannula drains blood from the RA into an extracorporeal centrifugal pump, which delivers blood back to the PA.

Any centrifugal pump with cannulas positioned in the RA and PA can be used to provide both RV support and improved systemic oxygenation by splicing an oxygenator into the circuit. This configuration is referred to as an oxy-RVAD. In contrast, veno-veno ECMO does not provide RV support because blood is drained from...
Acute Mechanical Support for RV Failure

the superior or inferior vena cava and delivered back to the RA. Direct RV bypass requires positioning of the outflow cannula in the PA.

Use of the TH-RVAD has been reported in multiple scenarios, including acute myocardial infarction, post-LVAD implantation, severe pulmonary hypertension, severe acute mitral regurgitation, and cardiac rejection after orthotopic heart transplantation. Several case reports have recently described use of the Protek Duo cannula for RV failure in the setting of LVAD implantation and cardiogenic shock resulting from decompensated severe pulmonary hypertension. In 2011, a single-center experience reported improvements in mean arterial pressure, RA pressure, cardiac index, RV stroke work, and mixed venous oxygen saturation in 9 patients within 24 hours of TH-RVAD implantation for various causes (Table 3). The in-hospital mortality rate was 44% and highest among patients with delayed TH-RVAD placement. In this report, no mechanical complications were observed during or after device implantation. In 2014, the THRIVE study (TandemHeart in Right Ventricular Support) retrospectively studied 46 patients receiving a TH-RVAD in 8 tertiary referral centers. The TH-RVAD was associated with acute hemodynamic improvement. In-hospital mortality was 57%, with the lowest mortality in patients with RV failure secondary to acute myocardial infarction or post-LVAD implantation. Increased age, biventricular failure, and TIMI (Thrombolysis in Myocardial Infarction) major bleeding were more prevalent in patients who did not survive to hospital discharge.

VA-ECMO: An Indirect RV Bypass System

VA-ECMO is frequently implanted during cardiopulmonary collapse or biventricular failure to improve systemic oxygenation. VA-ECMO can be deployed percutaneously via an extracorporeal centrifugal pump (ie, TandemHeart, CentriMag, Rotaflow, or Biomedicus pumps) and displaces venous blood from the RA across an oxygenator and into the arterial circulation. In select cases, 2 venous inflow cannulas can be placed in the RA and PA, thereby draining the RV from 2 locations. This configuration is known as veno-veno-arterial ECMO. In the setting of acute RV failure, VA-ECMO or veno-veno-arterial ECMO reduces RV preload by draining blood from the right atrium (RA) or both the RA and pulmonary artery (PA), respectively. Both systems oxygenate and transfer blood to the aorta (Ao). VA pressure may decrease or stay the same. LA indicates left atrium; and LV, left ventricle.

Clinical data supporting the use of VA-ECMO in the setting of acute RV failure are limited to case reports and small case series, but the effect of VA-ECMO on right-sided heart hemodynamics remains largely undefined (Table 3). In a study of 179 patients with refractory cardiogenic shock most commonly resulting from acute myocardial infarction or postcardiotomy shock, mean central venous pressure decreased by 5 mm Hg and mean PA pressure decreased by 11 mm Hg after 24 hours of ECMO support. These results imply that VA-ECMO may have salutary hemodynamic effects in patients with RV failure. Further studies exploring the effect of VA-ECMO on RV function and the potential utility of VA-ECMO as a management option for RV failure are needed.
Acute Biventricular Circulatory Support
With the advent of RV-AMCS devices, mechanical support options for cardiogenic shock caused by biventricular failure have evolved beyond surgically implanted biventricular pumps to now include various combinations of percutaneously delivered centrifugal- and axial-flow pumps. Biventricular support can be achieved with 2 TandemHeart devices, which require 4 separate 21F cannulas: 2 for LV support and 2 for RV support. Several reports have described the use of an IABP plus TH-RVAD,96 Impella 2.5 plus TH-RVAD,97 Impella 5.0 plus TH-RVAD,98 Impella 5.0 plus Impella RP,99 and Impella CP plus RP100 for biventricular support (Figure 6). As awareness of concomitant RV involvement in cardiogenic shock grows, the use of biventricular support strategies to improve clinical outcomes will require further study.

Patient Selection and Management of RV-Specific AMCS Devices
Given the recent introduction of RV-AMCS device options, no specific guidelines to optimize device selection and management exist. On the basis of the existing literature and our clinical experience, we have provided a few key recommendations and a proposed algorithm for the use of RV-AMCS devices (Figure 7). Early diagnosis with the use of hemodynamic, echocardiographic, and laboratory parameters to identify RV failure, to assess LV function, and to rule out pericardial diseases, including causes of constrictive or restrictive physiology, is a critical first step. Next, initial treatment should focus on reversible causes of RV failure such as RV myocardial infarction or pulmonary embolus. If not done already, acquiring hemodynamic data with a PA catheter will confirm the diagnosis of RV failure and provide a real-time assessment of cardiac function and volume status during treatment, which should focus on optimizing cardiac preload, considering inotropic support, and reducing RV afterload by adding pulmonary vasodilators and optimizing mechanical ventilator settings.

For patients whose blood pressure or cardiac index fails to improve despite initial treatment with an inotrope or a vasopressor, early use of RV-AMCS should be considered. Hemodynamic indexes (Table 1) may be helpful when trying to determine whether RV-AMCS is needed. Before RV-AMCS device activation, LV function must be carefully assessed. Operators should also clearly define their “exit strategy” and treatment objectives before AMCS device use, which may include RV support as a bridge to recovery, a bridge to LVAD, biventricular VAD, a total artificial heart, or a bridge to orthotopic heart transplantation. In the setting of RV myocardial infarction, the decision may be fairly straightforward. However, in patients with advanced heart failure, a heart team–based approach should be used to define whether RV-AMCS devices should be used. The need for an oxygenator should be anticipated because that can influence device selection. After the initiation of RV-AMCS, hemodynamic monitoring remains an important component of the management strategy by providing measurements of biventricular filling pressures, PA pulsatility, and Fick-derived cardiac output as indicators of optimal RV-AMCS device function and RV recovery. In the setting of impaired LV function, isolated use of an RV support device can lead to LV volume overload and acute pulmonary injury. Conversely, if isolated LV support is initiated in the setting of biventricular failure, then LV suction may occur as a result of limited preload supplied by the failing RV. In these cases, biventricular support should be considered. As is the case with most support devices, hemodynamic stability and adequate systemic perfusion at a low device setting often indicate that device removal is feasible.
Acute RV Failure

Early Diagnosis of RV Failure
Assess LV Function

Treat Reversible Causes
(i.e., RVMI, Pulmonary Embolus)

Rule out Pericardial Disease
(Cardiac Tamponade)

Acquire Hemodynamic Data
(PA Catheter)

Optimize preload
Add Inotropic support
Add Pulmonary vasodilators
Optimize mechanical ventilator

Worsening hypotension or Unresponsive*

Assessment by Heart Team

Initiate Acute RV AMCS

Impella RP
Tandem RVAD

Unresponsive* or Worsening Pulmonary Edema

Consider adding LV support

Figure 7. Proposed algorithm for right ventricular (RV) acute mechanical circulatory support (AMCS) device use in RV failure.

LV indicates left ventricular; PA, pulmonary artery; RVAD, right ventricular assist device; RVMI, right ventricular myocardial infarction; VA-ECMO, venoarterial extracorporeal membrane oxygenation; and VT/VF, ventricular tachycardia/ventricular fibrillation. *Unresponsive defined by new or persistent systolic blood pressure <90 mmHg or cardiac index <2.2 requiring ≥1 inotrope or vasopressor worsening end-organ perfusion.

FUTURE DIRECTIONS

Present-day RV-AMCS devices are restricted by the need for large-bore cannulas inserted via the femoral or internal jugular veins. Mobility for patients requiring RV-AMCS is limited. Future directions for RV-AMCS include the development of ambulatory and potentially fully implantable systems. The Circulite device (HeartWare Inc) is a fully implantable hybrid axial-centrifugal–flow pump that can shuttle blood from the RA to PA. Early testing of the Circulite system for RV failure in the setting of pulmonary hypertension is underway. In addition to engineering advances, the role of RV-AMCS devices as mechanisms to improve hepatic and renal congestion remains largely unexplored. Because multi-organ failure is a major reason for mortality in the setting of RV failure, RV-AMCS devices may serve not only to unload the RV but also to decongest and improve vital organ function.

SUMMARY

RV failure remains a major cause of morbidity and mortality. Percutaneous RV support devices play an important role in the management of RV failure with the ability to rapidly stabilize patients with cardiogenic shock involving the RV. The role of RV-AMCS devices will be as a bridge to therapy or recovery while advancements in coronary intervention, pulmonary hypertension, cardiac surgery, transplantation medicine, and VAD technology offer options for patients who survive cardiogenic shock. As RV devices become more commonly used, their role in the management of RV failure will be less dependent on operator skill and more dependent on improved algorithms for the early detection of RV failure, device selection, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure.

DISCLOSURES

Dr Kapur receives research funding from Abiomed Inc, St. Jude Inc, HeartWare Inc, Cardiac Assist Inc, and Maquet Inc, as well as speaker/consultant honoraria from Abiomed Inc, Maquet Inc, and HeartWare Inc. The other authors report no conflicts.

AFFILIATIONS

From The Cardiovascular Center, Tufts Medical Center, Boston, MA (N.K.K., M.L.E., Y.B., K.J.M., M.S.K.); Department of Cardiac Surgery, Northwestern University Medical Center, Chicago, IL (D.T.P.); and Cardiovascular Research Foundation, New York, NY (D.B.).

FOOTNOTES

Circulation is available at http://circ.ahajournals.org.

REFERENCES

Acute Mechanical Support for RV Failure

Kapur et al

Mechanical Circulatory Support Devices for Acute Right Ventricular Failure
Navin K. Kapur, Michele L. Esposito, Yousef Bader, Kevin J. Morine, Michael S. Kiernan, Duc Thinh Pham and Daniel Burkhoff

Circulation. 2017;136:314-326
doi: 10.1161/CIRCULATIONAHA.116.025290
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/136/3/314

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/